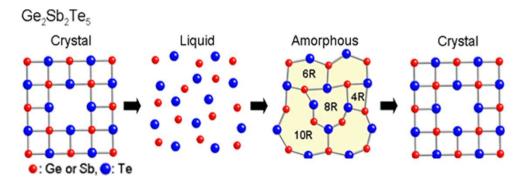


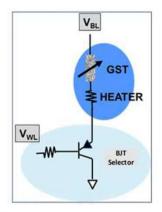
Reliability Assessment of Single-Ended PCM in Automotive Microcontrollers Compliant with AEC-Q100 Standards

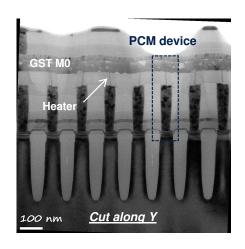
Fabio Dell'Orto, Riccardo Cea, S. Testa, G. Rota Quality and Reliability Engineer STMicroelectronics

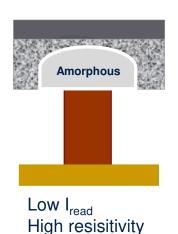

Index

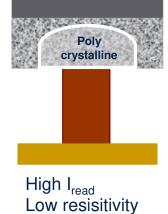
- Introduction on PCM
 - Material
 - Cell structure, read and write operation
 - Algo x write
- Failure Modes: Drift and Crystallization
- From Mission profile to Trial duration
- Double ended vs Xmemory
- Experimental data
- Conclusions

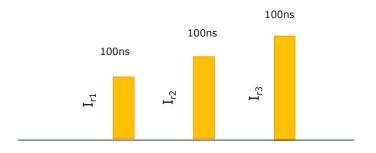
Phase Change Memory (PCM) storage mechanism

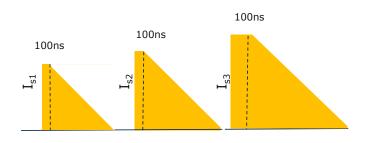

- PCM storage mechanism
 - Two phases of the chalcogenide alloy, $Ge_xSb_yTe_z$ (GST): Polycrystalline vs Amorphous
- Polycrystalline phase
 - High reflectivity / Low resistivity / High current
- Amorphous phase
 - Low reflectivity / High resistivity / Low current



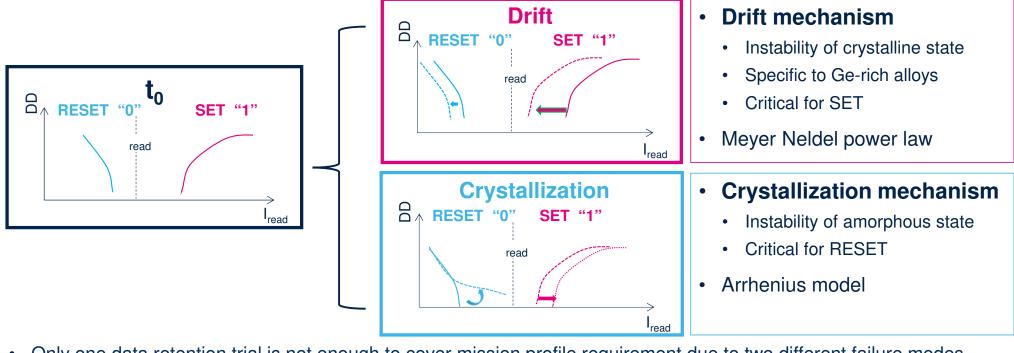

Read and Program Operation


- Reading operation
 - Constant Voltage applied across GST gives high current when it is crystalline and low current when amorphous
- Program operation
 - Self-heating due to controlled current flow (Joule effect)





Reset and set state


- RESET (0) Amorphous resistive phase
 - Fast cooling from melted state using fast and sharp
 - Rapid falling edge
 - $T > T_{melting}$
- SET (1) Polycrystalline conductive phase
 - A long electric impulse allows the crystallization into an FCC structure
 - $t_{pulse} > t_{crystallization}$
 - $T_{crystallization} < T < T_{melting}$

PCM failure modes: Drift and crystallization mechanisms

- Only one data retention trial is not enough to cover mission profile requirement due to two different failure modes
- The worst-case positioning of the distributions at the end of life for the Reset is retention post cycling, while for the Set is retention before cycling

RESET: Ea evaluation of crystallization

E_a is used to evaluate mission profile for reset crystallization by translating every single profile into an equivalent time at a given T_{bake}

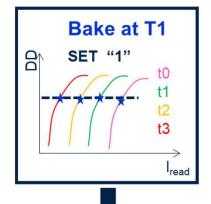
Arrhenius

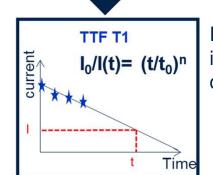
$$A_f = \exp\left[\frac{E_a}{k_B} \bullet \left(\frac{1}{T_u} - \frac{1}{T_t}\right)\right]$$

		-		
k(eV/K)	8.61733E-05	J		
Tj char. [°C]	1 65		×	
	Profile B		Profile B	
Tj [°C]	Time [h]		Time equ	uiv. [h]
-40	500			0.00
40	500	L		0.00
85	1000			0.00
135	5600			13.35
150	1200			65.21
160	150			58.10
165	50			50.00
70	60000			0.00
40	70000			0.00
90	6200			0.00
110	1250			0.01
130	500			0.40
150	50			2.72
175	15.00			93.82
тот				283.60

k(J/K) 1.38065E-23

Example

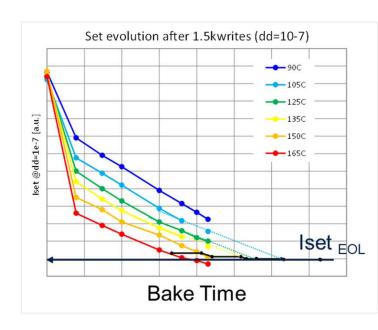



SET drift Mechanism: real use case

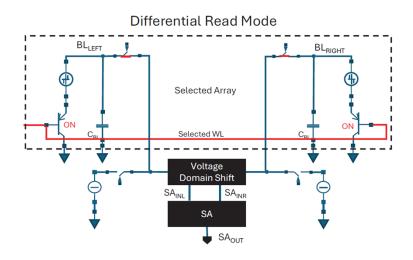
Considering a mission profile as an example, we can divide it by slices according to the trials on Set retention we want to perform.

	Prof. 2	Prof. 6
T _{bake}	Time [h]	Time [h]
90	108200	140105
105	30000	0
125	1250	1250
135	6100	6100
150	1250	1250
165	215	215

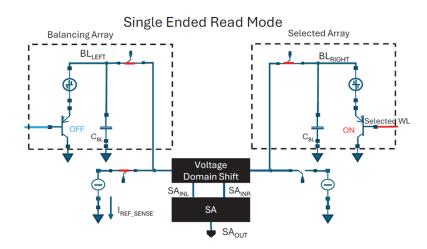
Table constructed by adding all the hours at T<T_{bake} in the mission profile



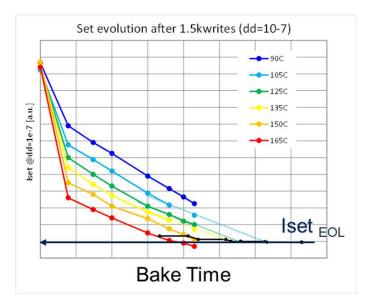
Each current distribution is taken at different times.

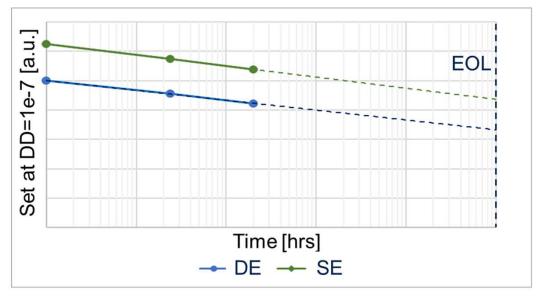

The value of the current of each distribution is taken at a given DD.

Each current value is plotted vs time of bake.



Double Ended vs Single Ended (Xmemory)

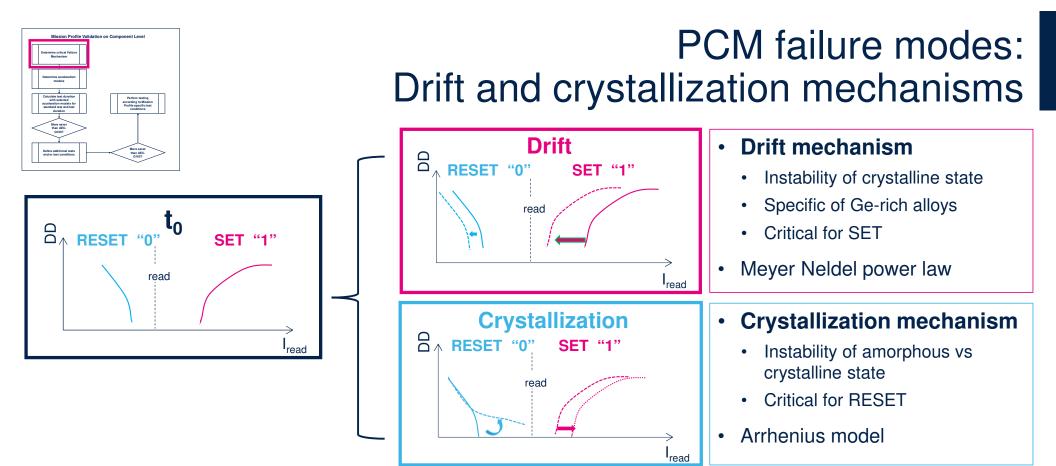

- The current in two cells with opposite state is compared.
 - → Drift is mitigated


- The current of every cell is compared to a fixed reference value → Drift is NOT mitigated
- Memory capacity is doubled on demand via activation pulse.

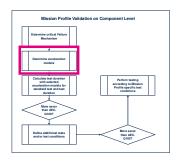
Experimental validation of SE

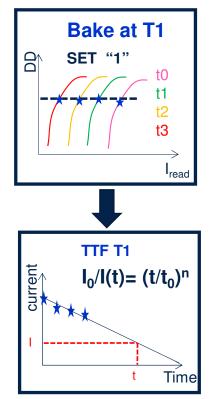
Drift speed is the same after
~1hr bake time.

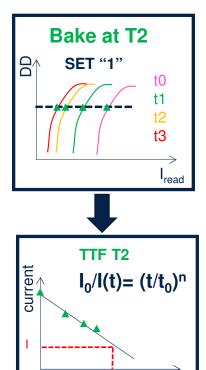
- Main contributor to higher EOL time is higher current at t0
- Activation pulse for SE increases t0 current allowing >1 decade margin at EOL

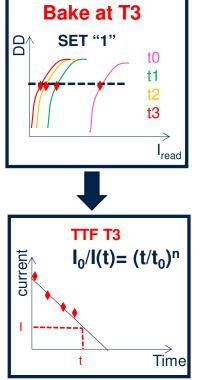

Conclusion

- We characterized PCM's Failure Modes allowing us to define qualification trial duration so that we can cover client's mission profile on the field.
- We achieved Xmemory mode, effectively doubling memory density.
- By optimizing Xmemory activation impulse we increased EOL margin on data retention.

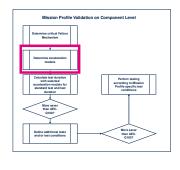

Thanks for your Attention



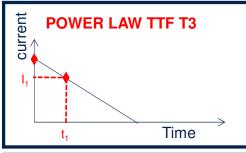

- Only one data retention trial is not enough to cover mission profile requirement due to two different failure modes
- New model to be considered with respect to flash data retention for drift mechanism



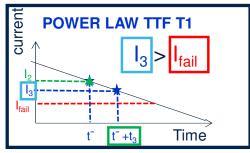
Spec evaluation: SET drift mechanism



Time

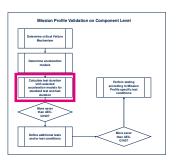

T1<T2<T3

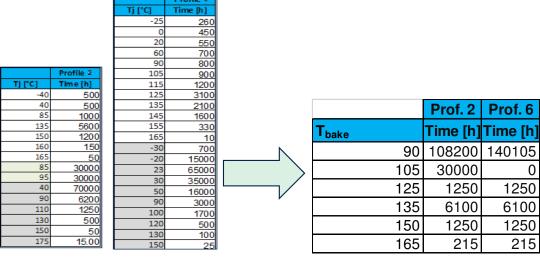
- Retention trials at different temperature without reprogram
- Set Drift described by Meyer Neldel power law



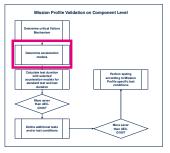
Mission Profile Example

T _{bak} [°C]	Time [hrs]	
T 1	t_3	
T2	t_2	
Т3	t ₁	

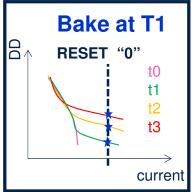


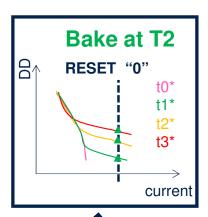

Spec evaluation: SET drift mechanism

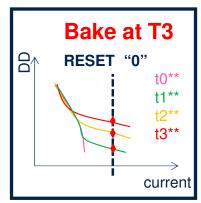
- Once TTF is known for each T_{bake} we can evaluate I₃ (SET_{EOL}) at t⁻ +t₃, equivalent time (t1+t2+t3) at T1
- Qualification target: I_3 must be higher than I_{fail}


Spec evaluation: SET drift Mechanism - real use case

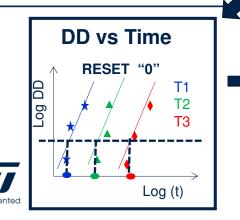
Considering one profile as an example (and considering half of the profile), we can divide it by slices according to the set experiments we have performed

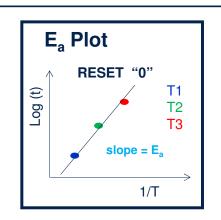


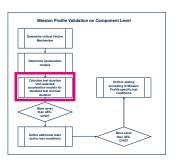




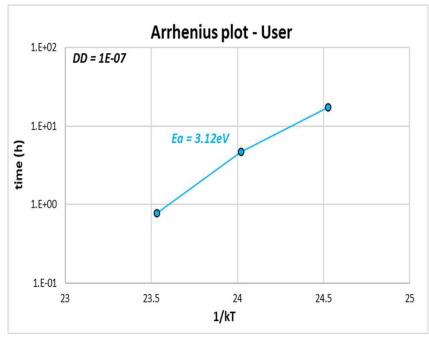
Spec evaluation: RESET crystallization mechanism







T1<T2<T3


- Retention trials at different temperature without reprogram
- Reset crystallization described by Arrhenius model

Spec evaluation: RESET Ea evaluation of crystallization

Even if reset crystallization is described by Arrhenius model, Ea value is quite different than flash data retention

