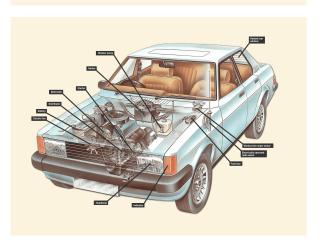


Rethinking "Automotive": How to Specify Components for Tomorrow's Mobility

European Automotive Electronics Reliability Workshop F.GOUYOU - Oct 2025

Electronics in the cars...

When AEC-Q specifications were first published (1994)...


The electronics shows

The electronic parts

Basic electronics

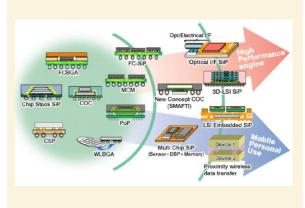
... to electronic cars ...

In the last 2 decades

The electronics shows

The electronic parts

Electronic equipments everywhere


... to EV and mobility

Nowadays

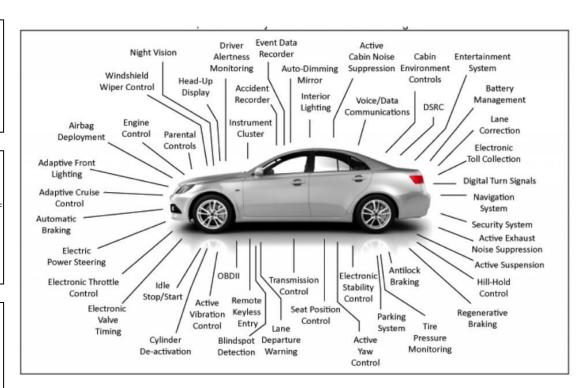
Mobility shows

Advanced packaging

EVs and Smart cities

Electronics Everywhere — Inside and Outside the Car

Charging & Energy Interfaces


- EV chargers (AC / DC fast chargers)
 : wallboxes, public charging stations.
- Charge connectors & cables
 Type 2, CCS, CHAdeMO, etc.
- Vehicle-to-Grid or -to-Home
 (V2G/V2H) converters: bidirectional power interfaces.

Access & Security Systems

- Key fobs / remote keyless entry (RKE) devices.
- Smart keys / proximity keys: communicate via LF (125 kHz) and UHF (433 MHz / 868 MHz).
- Digital keys on smartphones (BLE, NFC, UWB).
- Immobilizer antennas (sometimes integrated in external modules like door handles).

Service & Diagnostic Equipment

- OBD service tools and diagnostic dongles (plugged in externally).
- Remote diagnostic or fleet management devices connected temporarily or permanently outside the vehicle.

Connectivity & communication

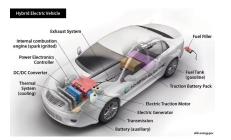
- Telematics units or antennas integrated into roof modules or shark fins (sometimes physically external).
- Vehicle-to-Infrastructure (V2X)
 roadside units (RSU) : placed along
 roads or in smart parking systems.
- External Wi-Fi / LTE gateways used by fleet operators.

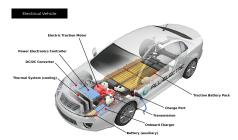
Environment Monitoring & Infrastructure

- Parking sensors or smart parking infrastructure (ground sensors, parking meters)
- Traffic and ADAS infrastructure (radar reflectors, cameras, beacons supporting autonomous functions).

Accessories & Add-ons

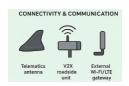
- Tire Pressure Monitoring System (TPMS) sensors (technically outside the cabin, inside wheel assemblies).
- Trailer control units / towing modules.
- External lighting units (smart headlights, taillights, exterior cameras).
- Roof boxes, auxiliary lights, or solar roofs with embedded electronics.


Diversification of Electronic Platforms Over Decades


Changes in the compartments / platforms

In the past, electronics were mainly confined to 2 platforms (engine bay, cabin)

Today, vehicle evolution extends them to new areas:



Applications moving to EV

BEV's in 2025

	Market Share	Volumes		
China	29.7%	~ 10.5 – 11.5 millions		
Europe	20.4%	~ 2.5 millions		
United States	11.2%	~ 1.0 million		
India	7.5%	~ 0.6 – 0.9 million		
Global	16.7	~ 14 – 15 millions		

Applications moving to EV

Changes in the stress factors

Typical validation plan for powertrain/inverter ECUs

	ICE VEHICLES (AEC-Q100 Gr. 0/1)	EV VEHICLES (LV124 / ISO 1675-4)
Operating Temperature range	-40 to +125°C (gr. 1) +150°C (gr. 0)	-40 to +105°C
Thermal Cycling tests	Rapid cycles -40 to +150°C 1000 cycles	Moderate ramp rate cycles -40 to +105°C
Power cycling / Active stresses	Engine starts and ignition cycles	Continuous load operation, regenerative braking, DC fast charges
Humidity / condensation tests	85°C/85% RH (1000h) non-condensing	60°C / 95% RH (1000h) + condensation cycles
Electrical stresses	12V, load dump, jump start	12V / 48V & HV (400-800V)
Mechanical / vibrations	High vibrations and shocks	Lower vibration (motor mount-damped) but higher frequencies

More use cases

		Passenger cars											
RANGES		Engine bay			or / Battery artment	Cabin / d	lashboard	Roof	Exterior				
	ICE	MHEV	EV	ICE	EV	ICE	EV	ICE / EV	ICE / EV				
Typical use cases or functions	functions - Alternator - Alternator - Charger - Radiator - Radiator - Radiator - Charger - Charg		- Fuel lines - Exhaust - Transmission tunnel	- HV battery pack - Cooling system - BMS	- Instrument cluster - HVAC - Airbags/ECUs	- Infotainment - ADAS/ECUs - Displays	- Antennas / Telematic unit - Sensors - Cameras	- GPS, - LiDAR, RADAR, - Cameras					
Ambient Temperature Range	-40°C to 90-110°C	-40°C to +110 °C (near IBSG/Inverter)	-40°C to 75°C (85-90°C under load)	-40°C to 60°C (>80°C near the exhaust)	-40°C to +45°C (+60°C during fast charge/heavy use)	-40°C to +75°C	-40°C to +75°C	-40 to +100°C (parkin (70°C for dark surfaces					
Reference standards	AEC-Q100 Gr. 1: -40°C to +125°C		LV124 or ISO 16750-4	AEC-Q100 Gr.2: -40°C to +105°C	LV124 or ISO 16750-4	AEC-Q100 Gr.2: -40°C to +105°C	LV124 or ISO 16750-4	AEC-Q100 Gr.2: -40°C to +105°C					
Service Life Time	15 years 240,000 km	10 to 15 years for ICE 7 to 10 years for 48V products	15 years 300,000 km (warranty) 500,000km (lifetime)	15 years 240,000 km	8 to 12 years 160,000 to 240,000 km	15 years	16 years	15 years	15 years				
Operating hours	4000 to 6000h (engines) 1000 to 2000h (alternator)	ICE: 4000 to 6000h BSG: 2000 to 3000h DC-DC: 1000 to 2000h	8,000h (service lifetime) 20,000 to 30,000h (charging/OBC)	4000 to 6000h	2000 to 3000h (battery discharge) 500 to 1000h (charging)	6000 to 10000h	6000 to 10000h (displays) up to 160000 (ECUs) depends on operating modes	4000 to 10000h	4000 to 10000h				
Vibration Range	Low-frequency dominant 20 to 200Hz (combustion pulses, engine mounts)	20Hz to 1kHz (ICE range) plus 10 to 15kHz (electric)	High-frequency dominant 10Hz to 15kHz	200 to 1kHz (transmission, drivetrain)		20 to 250Hz	40 to 600Hz	30Hz to 1kHz	100Hz to 2kHz				
Acceleration	2.5 to 7.0 m/s²	2.5 to 12.0 m/s ²	3.9 to 12.0 m/s²	2.5 to 7.0 m/s²	3.9 to 12.0 m/s²	2.5 to 7.0 m/s ²	3.9 to 12.0 m/s²	2.5 to 7.0 m/s²	2.5 to 7.0 m/s²				
Humidity Range	10% to 95% RH	10% to 95% RH	10% to 95% RH	10% to 95%	5% to 95%	10% to 90%	10% to 90%	10% to 90%	5% to 100%				
Electrical stress	12V, load dump up to +174V	12V and HV (48-100V)	12V, 48V, and HV (400-800V)	12V, load dump up to +174V	12V, 48V, and HV (400-800V)	12V, load dump up to +174V	12V, 48V, and HV (400-800V)						

Labels (grades) commonly found

RANGES	Consumer	Industrial	Avionic	Military	Aerospace	
Typical use cases or functions			Aircraft control systems, flight computers, navigation.	Radar systems, communication equipment, missile guidance, tanks.	Satellites, spacecraft, deep-space probes, orbital vehicles.	
Ambient Temperature Range	0 to +70°C	-40°C to 85°C	-55°C to 125°C	-55°C to 125°C	-150°C to 150°C	
Reference standards			Certified under DO-254 (HW) and DO-178C (SW).	Built to MIL-STD specs.		
Service Life Time	3 to 5 years	7 to 15 years	20 to 30 years	Minutes to 30 years	10-25+ years	
Operating hours	1,000 to 10,000	20,000 to 50,000	50000 to 100000	20000 to 80000h	50000 to 150000h	
Vibration Range 0Hz to 500Hz		0Hz to 1000Hz	0Hz to 2000Hz	0Hz to 2000Hz	0Hz to 2000Hz	
Acceleration	30ms ⁻¹	50ms ⁻¹	1000ms ⁻¹	1000ms ⁻¹	1000ms ⁻¹	
Humidity Range	0% to 90%	Application def.	0% to 100%	0% to 100%	0% to 100%	
Ionizing Radiation	Insignificant	Low to high	Medium	H igh	High	
ESD Robustness (HBM)	Up to 3kV	Up to 10kV	Up to 25kV	Up to 25kV	Up to 25kV	
PCBA ppm Targets	< 1000	< 500	0.1 to 10	0.1 to 10	0.1 to 10	
Device, component & SIP FIT targets	< 100	< 100	< 1	< 1	< 1	

Grade comparison

For Integrated Circuits (collected from diverse companies)

	Grade	С	1	Α
	Qualification Test Plan	No	AEC-Q100	AEC-Q100
	Quality System	ISO9001		IATF16949
Quality &	Operating Temperature	0 to 70°C	-40 to 85 °C	-40 to 125 °C
Reliability	DPM		<50	Zero Defect Methodology
	Failure Analysis flow	Upon agreement	Standard	Priority
Co. modes :	Automotive Process Flow	No	No	On demand
Foundry	WAT SPL Monitoring	No	No	Yes
	EWS (die sort)	No or sampled	Yes	Yes
Probe	GDBC Detection	No	No	Optional
	Dynamic PAT	No	No	Yes
A a a a mala lu i	Enhanced optical inspections	No	No	Yes
Assembly	Certified equipment and operators	No	No	Yes
	Test conditions	100% RT	100% RT or HT	100% RT or HT
Foundry Foundry Probe Assembly Test Documentation F F A A A A B C C C C C C C C C C C C	HSOV (when applicable)	No	Yes	Yes
	SBL, SYA	No	Yes	Yes
Decumentation	Part Production Approval Process (PPAP)	No	No	Yes
Documentation	Material declaration (MDS)	IEC 62474 / IPC-175x	IEC 62474 / IPC-175x	IMDS / CAMDS

Main differences between grades: Process control and Services

Design and reliability are intrinsically the same.

DPM comparison

Year	Grade	Volume	Failures	EOS	DPM incl EOS	DPM w/out EOS
2018	A-grade	1,012,088	3	3	2.96	0.00
2018	I-grade	47,868,037	78	66	1.63	0.25
2019	A-grade	3,525,704	3	3	0.85	0.00
2019	I-grade	48,692,384	58	54	1.19	0.08
2020	A-grade	6,781,002	10	10	1.47	0.00
2020	I-grade	63,582,279	69	64	1.09	0.08

Reference: Skyworks Si86xx digital isolators

- In some years, A-grade DPM may appear higher because automotive customers are more diligent in returning suspected defective parts for F/A.
- > PPM rates are similar for I and A grades; reliability is good.
- Few isolated I-grade failures likely due to lighter testing.

Component and assembly technologies evolve

Type of substrate	Placement / Attachment method	Technology principle	Main stresses during process	Typical applications
	Reflow soldering (SMT)	Solder paste reflowed in oven	Thermal (220-260 °C)	Standard ICs, passives, connectors
Rigid PCB (FR4)	Wave / Selective soldering	Molten solder bath or localized flow	Thermal + Mechanical (vibration, flow)	THT, mixed-assembly boards
	Conductive adhesive bonding	Epoxy with conductive fillers	Chemical curing (low thermal)	Temperature-sensitive parts
	Vapor phase reflow	Controlled condensation heating	Thermal (uniform)	Dense assemblies, fine-pitch BGAs
UDI / Digid Flay DOD	Laser soldering	Local heat input by laser	Localized thermal + Optical	Optical / high-precision modules
HDI / Rigid-Flex PCB	Silver sintering	Pressure + temperature bonding with Ag paste	Thermal + Compression / Pressure	Power MOSFETs, LEDs, IGBTs
	Epoxy underfill + reflow	Mechanical reinforcement post-reflow	Thermal + Chemical curing	Flip-chip or CSP packages
	Wire bonding (Au, Cu, Al)	Ultrasonic or thermo-compression bonding	Mechanical (ultrasonic force) + Mild th	Power modules, sensors
Ceramic / LTCC / HTCC	Flip-chip solder bumps	Direct die attach with solder interconnects	Thermal + Mechanical (CTE mismatch	ASICs, RF chips
	Direct Copper Bonding (DCB)	Cu-ceramic joining by high-T process	High thermal + Thermal stress (CTE n	High-power substrates
Organic / Silicon Interposers	Thermo-compression bonding	Pressure + heat for fine-pitch dies	Thermal + Compression pressure	2.5D, 3D packages
	Micro-bump / Cu pillar bonding	Fine-pitch bump interconnects	Thermal + Compression	WLP, SiP, HBM memory stacks
Interposers	Embedded die / component	Die laminated into PCB stack-up	Mechanical (lamination) + Thermal	Compact power or sensor modules
	ACF / ACA bonding	Anisotropic conductive film adhesive	Low thermal + Compression	Displays, camera modules, FPCs
Flexible / Film	Low-temp solder / adhesive attach	<150°C reflow for polymer substrates	Low thermal	Wearables, flexible sensors
Substrates	Laser Direct Structuring (LDS)	3D circuit on molded plastic	Optical + localized thermal	Antenna modules, 3D-MID parts
	Printed electronics	Additive conductive ink printing	Chemical drying / curing	Smart labels, sensors, IoT tags
707 0 11 10 20 11 11 11 10 10 10 10 10 10 10 10 10 10	TSV stacking	Through-silicon vias for vertical links	Mechanical (thinning) + Thermal	3D memory, logic stacks
Wafer / Die-Level (SiP, FOWLP)	Fan-Out Packaging (FOWLP, eWLB)	Redistribution layer + molded carrier	Mechanical (molding) + Thermal	Mobile SoC, RF front-end
	Hybrid Cu-Cu bonding	Direct metallic interconnect	Compression + Moderate thermal	Advanced SoC integration
\$	Pressure-assisted Ag sintering	High reliability, void-free attach	High compression + Thermal	Automotive inverter, LED, power control
High-Power Substrates	Transient Liquid Phase Bonding (TLPB)	Solid-state diffusion bonding	High thermal + Compression	Harsh environment power modules
(DCB, AMB, Si₃N₄)	Cu clip / ribbon bonding	Low-inductance replacement for wires	Mechanical (stamping / bonding)	Power MOSFETs, SiC modules
Nafer / Die-Level (SiP, OWLP)	Direct die attach to heat spreader	Die placed directly on Cu / Al base	Compression + Thermal	High-dissipation devices

Type of stress
Thermal (high)
Thermal (moderate)
Thermal (low)
Chemical reaction
Mechanical (compression)
Mechanical (others)
Light induced (UV, LASER)

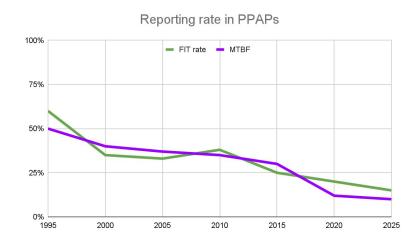
Assembly process stressors moving from high-temp to TC or sintering => PC (Pre-conditioning) to extend to new assembly technologies

RELIABILITY ASPECTS

As specified in AEC-Q100

Loading	Example Mission Profile Input	Stress Test	Stress Conditions	Acceleration Model (all temperatures in K, not in °C)	Model Parameters	Calculated Test Duration	Q100 Test Duration
Operation	t _u = 12,000 hr (average operating use time over 15 yr) T _v = 87°C (average junction temperature in use environment)	High Temperature Operating Life (HTOL)	T _t = 125°C (junction temperature in test environment)	$Arrhenius \\ A_f = \exp\biggl[\frac{E_a}{k_B} \bullet \biggl(\frac{1}{T_u} - \frac{1}{T_t}\biggr)\biggr]$ Also applicable for High Temperature Storage Life (HTSL) and NVM Endurance, Data Retention Bake, & Operational Life (EDR)	E _s = 0.7 eV (activation energy; 0.7 eV is a typical value, actual values depend on failure mechanism and range from -0.2 to 1.4 eV) k _B = 8.61733 x 10 ⁻⁵ eV/K (Boltzmann's Constant)	$t_{\rm t}$ = 1393 hr (test time) $t_{\rm t} = \frac{t_{\rm u}}{A_f}$	1000 hr
Thermo- mechanical	$\begin{aligned} &n_u = 54,750 \text{ cls} \\ &(\text{number of engine} \\ &\text{on/off cycles over 15 yr} \\ &\text{of use}) \end{aligned}$ $\Delta T_u = 76^{\circ} C \\ &(\text{average thermal cycle} \\ &\text{temperature change in} \\ &\text{use environment}) \end{aligned}$	Temperature Cycling (TC)	ΔT _t = 205°C (thermal cycle temperature change in test environment: -55°C to +150°C)	Coffin Manson $A_f = \left(\frac{\Delta T_t}{\Delta T_u}\right)^m$ Also applicable for Power Temperature Cycle (PTC)	m = 4 (Coffin Manson exponent; 4 is to be used for cracks in hard metal alloys, actual values depend on failure mechanisms and range from 1 for ductile to 9 for brittle materials)	$n_{\rm t}$ =1034 cls (number of cycles in test) ${\cal N}_t = \frac{n_u}{A_f}$	1000 cls
Humidity (Option 1)	t _u = 131,400 hr (average on/off time over 15 yr of use) RH _u = 74% (average relative humidity in use environment) T _u = 32°C (average temperature in use environment: 9% @ 87°C - time on and 91% @ 27°C - time off)	Temperature Humidity Bias (THB) T _t = 85°C (ambient temperature in test environment)		Hallberg-Peck $A_f = \left(\frac{RH_t}{RH_u}\right)^p \bullet \exp\left[\frac{E_t}{k_g}\bullet\left(\frac{1}{T_u} - \frac{1}{T_t}\right)\right]$ Also applicable for Highly Accelerated Steam Test (HAST) and Unbiased Humidity Steam Test (UHST). See Notes.	p = 3 (Peck exponent, 3 is to be used for bond pad corrosion) E _a = 0.8 eV (activation energy; 0.8 eV is to be used for bond pad corrosion) k _B = 8.61733 x 10 ⁻⁵ eV/K (Boltzmann's Constant)	$T_t = 960 \text{ hr}$ $t_t = \frac{t_u}{A_f}$	1000 hr

Test plans must be adapted to new mission profiles coming from new use cases.


Reliability data

Declarations in PPAPs

AEC-Q reports (tests to pass) have taken over...

		Test number:	Deadus	t series / par		PRODUC	T QUAL	IFICATIO	N TEST R		duct type: Single	Federal
			Ploduc	Base Climatic	standard: A category: 4		v. D			Rated cap Rate	oacitance: 3900µ d voltage: 35V	F ± 20 %
				Lot tra	aceability: 9	05875176				F	Result: APF	ROVED
Test Group	Test Group Number of specimen	Test condition		7C/C		ipation r (tan δ)	E	. (eries Resist ESR)	ance	Leakage cu	rrent (LC)
sst C	nmp	lest condition		%	<u> </u>	*			mΩ		μ/	
Ĕ	Zσ		f =	120Hz	f=	120Hz	f=	120Hz	f=	100kHz	35 Vdc,	
		Pre Stress Electrical Test	max ►	-10,74	max ►	0,106	max ►	39,23	max 🕨	26,29	max ►	145,90
			ave ►	-7,19	ave ►	0,093	ave ►	34,19	ave ►	21,15	ave ►	86,48
1	419	For ΔC/C it was considered ΔC/Cr.	min ►	-3,71	min ►	0,086	min ►	30,96	min ►	19,27	min ►	60,52
			max.:	± 20	max.:	0,160	max.:	*	max.:	27,00	max.:	4095
		High temperature exposure MIL-STD-202, method 108: Test temperature: 135°C Test duration: 1000h Unpowered.	max ►	-6,46	max ►	0,092	max ►	35,48	max ►	24,90	max ►	154,73
			ave ►	-6,03	ave ►	0,089	ave ►	34,50	ave ►	23,93	ave 🕨	139,33
3	77		min ►	-5,19	min ►	0,087	min ►	33,66	min ►	23,06	min ►	127,42
			max.:	± 20	max.:	0,320	max.:		max.:	٠	max.:	4095
		Temperature cycling	max ►	-6,35	max ►	0,088	max ►	33,78	max ►	22,72	max ►	265,33
		JESD22, method JA-104: Maximum temperature: 150°C Minimum temperature: 40°C Dwell time at each temperature: 30min Test duration: 1000 cycles	ave ►	-5,59	ave ►	0,086	ave ►	33,02	ave ►	22,13	ave ►	231,16
4	77		min 🕨	-4,83	min ►	0,084	min ►	32,35	min ►	21,37	min ▶	190,09
			max.:	± 15	max.:	0,192	max.:	*	max.:	٠	max.:	*
		Biased humidity	max ►	-4,11	max ►	0,099	max ►	37,46	max ►	22,92	max ►	143,61
		MIL-STD-202, method 103:	ave 🕨	-3,20	ave ►	0,091	ave -	34,71	ave ►	21,10	ave ►	96,82
7	77	Test temperature: 85°C Relative Humidity: 85% Test duration: 1000h	min ►	-2,63	min ►	0,086	min ►	32,57	min ►	20,52	min ►	72,32
		Test voltage: 35V	max.:	± 15	max.:	0,160	max.:	(*)	max.:		max.:	4095

...while reliability data (FIT rate, MTBF) no longer reported.

Reduced visibility on product robustness.

Reliability data

Detailed AEC gr. D reliability data are rarely shared.

When available, acceptance criteria often misalign with automotive lifetime targets

AEC D reliability data rarely shared. Criteria often miss automotive lifetimes.

Conclusion

- Revisit qualification models ⇒ evolving technologies, new stresses
- Diversify Mission Profiles ⇒ by platform, not one-size-fits-all
- Be cautious with supplier labels ⇒ potential misinterpretation
- Include new stress factors ⇒ environment + process
- Back to fundamentals ⇒ mission-driven tests, reliability metrics (FIT / MTBF), not outdated "test-to-pass" plans

This will help avoiding under- or over-specification and ensure our requirements remain both relevant and robust.

SMART TECHNOLOGY FOR SMARTER MOBILITY