

Thermal Fatigue in Copper Wire Bonds under Power Cycling: Acceleration Model and Influence of Different Wire Types

Authors: Carlo Neva, Alberto Mancaleoni, Daniele Bini, Santo Pugliese

Thermal Fatigue in Cu Wire Bonds under Power Cycling

Copper wire thermal fatigue caused by the active cycling of power stages is gaining an increasing relevance for smart power products

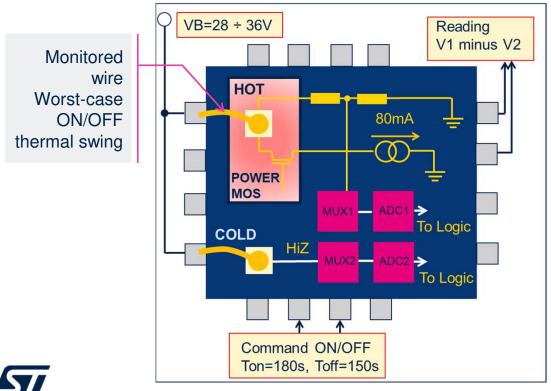
Thermal Fatigue in Cu Wire Bonds under Power Cycling

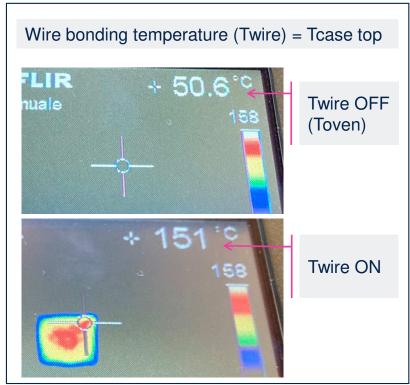
Reliability characterization is becoming necessary

PILOT EXPERIMENT

EXPERIMENT
DESCRIPTION AND
RESULTS

Characterization done on 1.2mil Cu wire

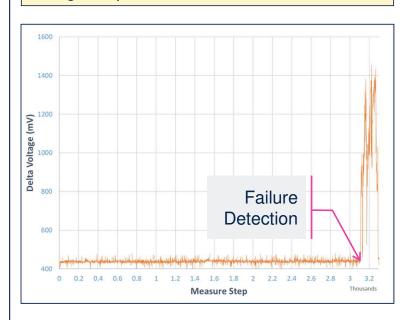

- 4N copper wires tested in three different stress conditions.
- 4N, 2N, and PCC wire types compared
- EXPERIMENTAL SET-UP
- TRIAL
- OUTCOME
 - · Wire performance comparison results
 - · Acceleration Model Proposal
 - HTOL prediction example
 - Failure Mechanism
- CONCLUSION and NEXT STEPS


Test Vehicle and Experimental Set-Up

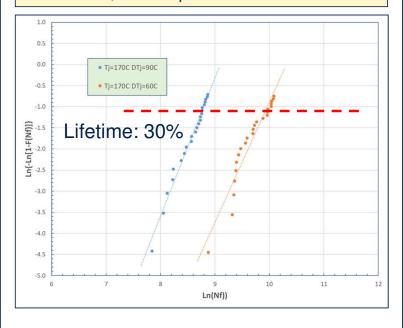
TEST VEHICLE: BCD (RDL option) Product / Package TQFP / Copper Wire 1.2mils

EQUIPMENT: HTOL board

STRESS RECIPE: Customize to apply power cycle and to monitor the resistance of the worst-case wire bond


Test Vehicle and Experimental Set-Up

TEST VEHICLE: BCD (RDL option) Product / Package TQFP / Copper Wire 1.2mils


EQUIPMENT: HTOL board

STRESS RECIPE: Customize to apply power cycling and to monitor the resistance of the worst-case wire bond

Wire bonding crack is detected as a sudden voltage drop increase

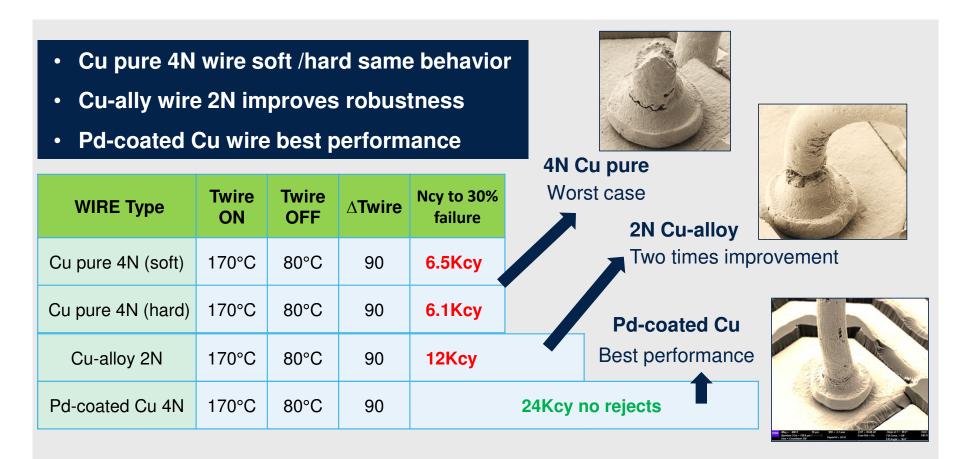
The number of cycles to failure of each DUT is recorded, CDF is plotted on Weibull Chart

TRIALS and PHYSICAL ANALYSIS TECHNIQUES

Cu pure 4N wire is Tested Under Different Stress Conditions and Compared with Cu-alloy and PCC Wires

	WIRE Type	Twire ON	Twire OFF	∆Twire	
	Cu pure 4N (soft)	170°C	110°C	60	•
	Cu pure 4N (soft)	140°C	50°C	90	
	Cu pure 4N (soft)	170°C	80°C	90	,
	Cu pure 4N (hard)	170°C	80°C	90	
	Cu-ally 2N	170°C	80°C	90	
	Pd-coated Cu 4N	170°C	80°C	90	

Trails allow both failure mechanism and acceleration model investigation


Extensive physical analysis for failure mechanism investigation

- Curve Tracer Pin to Pin to check wire bonding failure
- **SAM analysis** to exclude major delamination
- · Wire inspection after de-cap
 - Optical Microscope and SEM
- Wire Cross section SEM analysis
 - SE (Secondary Electron)
 - BSE (Back Scattered Electron)
 - EDX (Energy Dispersion Xray)
 - BSED (Back Scattered Electron Diffraction)

Both virgin parts and failed parts after test were inspected for all trials

WIRE PERFORMANCE COMPARISON

ACCELERATION MODEL PROPOSAL

Accelerated Tests Results (Ncy_f=Weibull 30%)

WIRE Type Cu pure 4N (soft)	Twire ON	Twire OFF	∆Twire	Ncy to failure
TRIAL 1	170°C	110°C	60	24.7Kcy
TRAIL 2	140°C	50°C	90	26.6Kcy
TRIAL 3	170°C	80°C	90	6.5Kcy

The lifetime dependence on both Twire ON and ΔT suggests the Norris-Landzberg equation

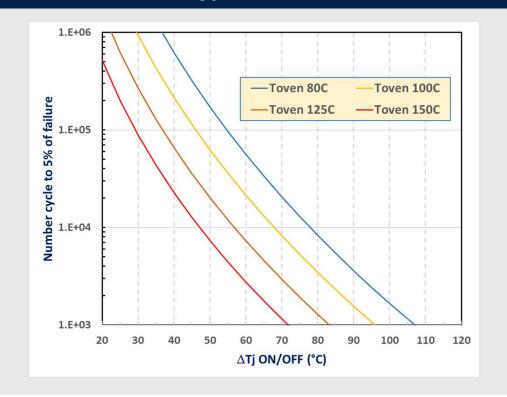
Norris-Landzberg Equation

$$AF = \frac{N_1}{N_2} = \left(\frac{\Delta T max1}{\Delta T max2}\right)^n \times exp\left[\frac{Ea}{k} \times \left(\frac{1}{T max2} - \frac{1}{T max1}\right)\right]$$

- Frequency factor ignored (tests at same frequency)
- Tmax=TwireON

Parameters Estimated from Accelerated Tests

n=3.3 (Trial1 vs Trail3)Ea=0.74eV (Trial2 vs Trial3)


Allows Prediction for:

- HTOL stress condition setting
- extrapolation to use condition
- customer application support

Norris- Landzberg Prediction vs HTOL Setup

Number of Cycle to 5% Failure Curves Cu 4N 1.2mil

EXAMPLE 1:

HTOL @ Toven=150°C, Tj ON=180°C (hottest point)
12000 ON/OFF cycles target (2khrs, OFF every 10min)
No issue expected

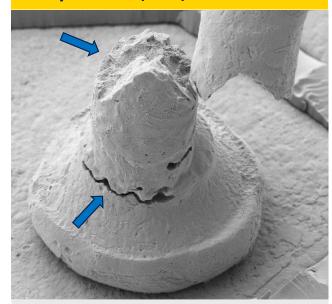
EXAMPLE 2:

HTOL @ Toven=100°C, Tj ON=190°C (hottest point) 6000 ON/OFF cycles target (1khrs, OFF every 10min)

Thermal fatigue wire crack failures expected

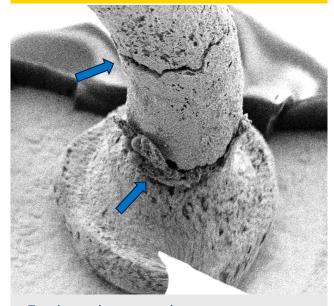
Possible Actions:

- Improve Rthj-amb to reduce ΔTj but same Tjavg
- Reduce Toven but same ΔTj prolonging test duration
- Splitted HTOL
 - Functional HTOL at high Tjavg with few ON/OFF
 - Customized HTOL for ON/OFF characterization
- Change the wire to Cu-alloy or Pd-coated wire for parts to be submitted to HTOL



- Thermal fatigue crack confirmed on all inspected parts
- Major cracks are one at the ball-neck and the other ~30um above (wire kink)

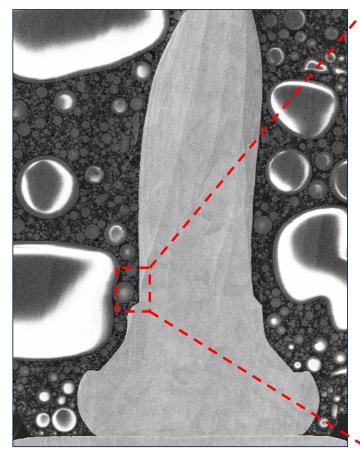
Cu pure & Cu-alloy wires

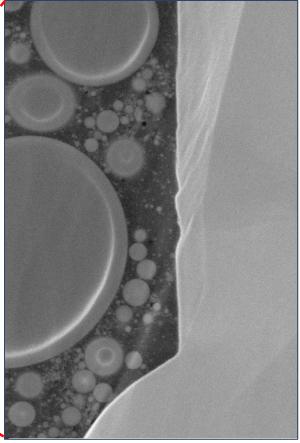

SEM Inspection

Cu pure 4N (soft) wire

7 rejects inspected Double major cracks detected

Cu pure 4N (hard) wire

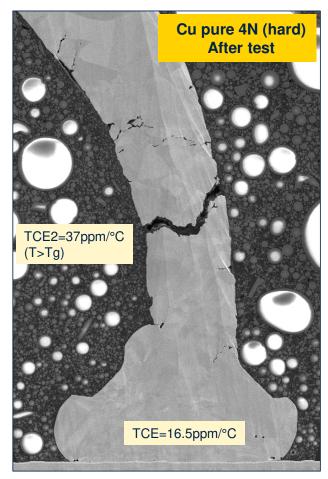

5 rejects inspected Double major cracks detected

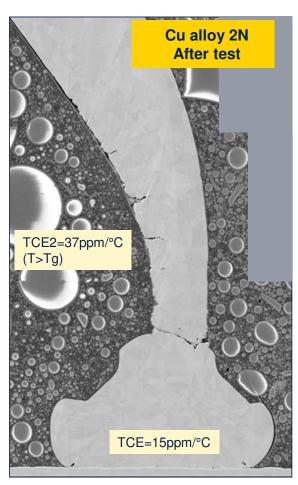

Cu-alloy 2N wire

2 rejects inspected Single major crack detected

Cu pure & Cu-alloy wires

Virgin wire Cross Section

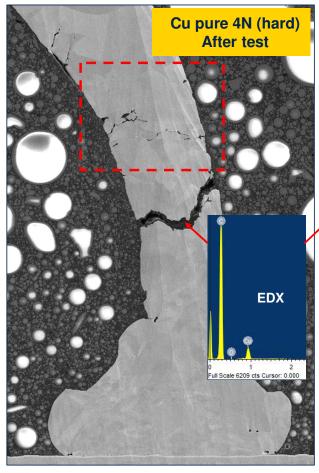

Virgin wire before thermal fatigue stress

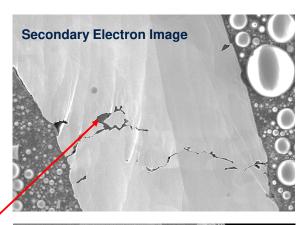

Morphology:

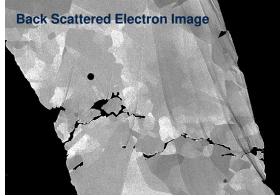
- good adhesion between molding and wire
- almost smooth wire surface with small engravings

Similar morphology observed in both pure copper and copperalloy wires

Cu pure & Cu-alloy wires Failed wire Cross Section

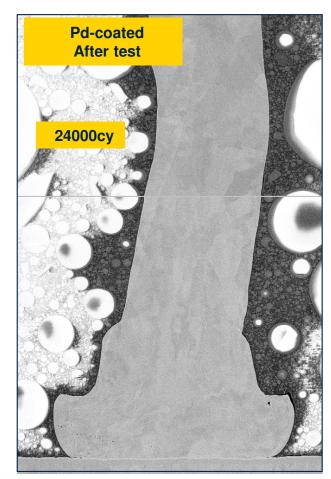

Huge thermal stress degradation detected

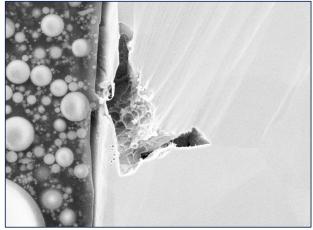

Morphology:


- Cu-alloy wire shows less damages than pure copper wire, in agreement with its longer lifetime
- both wires shows one major crack and several other perpendicular fractures along the wire, extending from the ball neck up to ~80 μm above
- · crack initiation is at the wire surface
- In some points, the molding fills the crack, and no gap is created at the interface, suggesting a molding degradation also

A robust wire surface interface is critical to mitigate thermal fatigue crack initiation and wire degradation

Cu pure & Cu-alloy wires Failed wire Cross Section


Huge thermal stress degradation detected


Morphology:

- Cu-alloy wire shows less damages than pure copper wire, in agreement with its longer lifetime
- both wires shows one major crack and several other perpendicular fractures along the wire, extending from the ball neck up to ~80 μm above
- · crack initiation is at the wire surface
- In some points, the molding fills the crack, and no gap is created at the interface, suggesting a molding degradation also

A robust wire surface interface is critical to mitigate thermal fatigue crack initiation and wire degradation

Pd-coated 4N Cu wire

Cross Section

Minor damages detected

Morphology:

- · few minor crack detected
- crack initiation is at wire surface in correspondence of Pd-coating deterioration point

The Pd coating is effective to delay crack initiation at wire surface

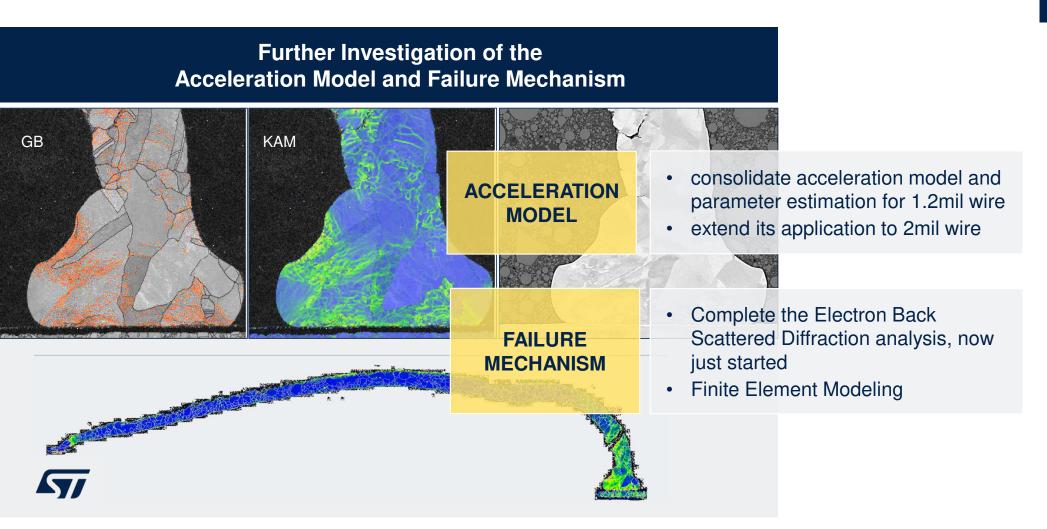
CONCLUSION

Thermal Fatigue in 1.2mil Cu Wire Bonds under Power Cycling Pilot Experiment Major Outcomes

ACCELERATION MODEL

The Norris-Landzberg equation is proposed as acceleration model

parameter estimation n=3.3 and Ea=0.74eV


FAILURE MECHANISM

- In the cases of pure copper and copper alloy wires, thermal fatigue crack initiation occurs at the wire surface, where degradation of the molding compound is also observed
- A robust wire surface interface is critical to mitigate thermal fatigue crack initiation and wire degradation
- The Pd coating is an effective solution to protect the wire surface and delays crack formation

WIRE TYPE COMPARISON

- Cu pure 4N wire type showed the lowest lifetime
- The Cu-alloy 2N wire type doubles the lifetime of the 4N wire.
- The Pd-coated 4N wire is the best performer

NEXT STEPS

Thank You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

